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ABSTRACT

The assessment of model fit is important in Structural Equation Modeling (SEM). Several 
goodness-of-fit (GoF) measures are affected by sample size and the number of parameters 
to be estimated. A large sample size is needed to test a complex model involving a large 
number of parameters to be estimated. One of the solutions to reduce the number of 
parameters to be estimated in a given model is by considering item parceling. The effects 
of item parceling on parameter estimates and GoF measures in a structural equation model 
was investigated via a simulation study. The simulation results indicate that the parameter 
estimates are closer to the true parameter values for the IL model whenever the distribution 
of data is normal but biased when the data is highly skewed. The parameter estimates for 
the IP model were found to be underestimated for both normal and non-normal data. The 
GoF measures were higher for the IP model. Additionally, the RMSEA was lower for the IP 
model when data were skewed. This shows that item parceling may improve GoF measures 
but the effect of exogenous on endogenous variable is underestimated. Application to a 
real data set confirmed the results of the simulation study.
Keywords: Goodness of fit, item parceling, parameter estimates, simulation, structural equation modeling

INTRODUCTION

Structural equation modeling (SEM) is a 
multivariate statistical analysis technique 
used to identify the association between 
more than one variable. SEM is a unique 
combination of multivariate techniques such 
as factor analysis and multiple regression 
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analysis. However, in SEM, the independent variable in a regression equation can be the 
dependent variable in another regression equation (Hair et al., 2015). SEM is widely used 
in psychology (Marsh et al., 1988; Mulaik et al., 1989; Bentler, 1990; Curran et al., 1996; 
Iacobucci, 2010; Little et al., 2013), marketing (Jöreskog & Sörbom, 1982; Bearden et al., 
1982; Bagozzi & Yi, 1988), management (Shah & Goldstein, 2006; Rocha & Chelladurai, 
2012; Hair et al., 2015), organizational behavior (Landis et al., 2000; Ryu, 2011), and 
business research (Sharma et al., 2005). 

One of the most intensive parts in SEM is estimating the parameter of the model. 
Maximum Likelihood (ML) is the most popular method of estimation chosen by researchers 
(Curran et al., 1996; Hall et al., 1999; Nasser & Wisenbaker, 2006; Ory & Mokhtarian, 2010; 
Sterba & MacCallum, 2010; Ryu, 2011; Hamzah et al., 2017). The estimation process in 
ML aims to yield the minimum discrepancy between the sample covariance matrix and the 
estimated covariance matrix (Byrne, 2010). ML has several  advantages such as being more 
stable, produces reliable results and is more accurate compared to other estimation methods 
(Olsson et al., 2000; Olsson et al., 2004). Besides, it is robust to moderate departures from 
normality assumption (Hair et al., 2015).  

Another important aspect of SEM is the assessment of model fit for the structural 
model. It is used to test the consistency of a proposed theoretical model with the data. 
The model is clarified as good when the estimated covariance matrix is sufficiently close 
to the observed covariance matrix (Hair et al., 2015). The most popular goodness-of-fit 
(GoF) measures used to examine model fit are chi-squared (x2), root mean square error 
of approximation (RMSEA), goodness-of-fit index (GFI), Adjusted goodness-of-fit index 
(AGFI), Normed Fit Index (NFI), Non-Normed Fit Index (NNFI) or also known as Tucker-
Lewis index (TLI) and comparative fit index (CFI). 

Several GoF measures are influenced by sample size and number of estimated 
parameters (Marsh et al., 1988; Ding et al., 1995; Hooper et al., 2008; Rocha & Chelladurai, 
2012). Parameter estimates may be biased when a construct consists of a small number of 
indicators. Thus, a minimum of three indicators per construct is recommended to produce 
unbiased parameter estimates (Ding et al., 1995; Hair et al., 2015; Iacobucci, 2010). 
However, the analysis of SEM is problematic for a model that consists of a large number of 
indicators with a small sample size (Deng et al., 2018). Hence, Hair et al. (2015) suggested 
that minimum sample sizes were defined with a complement of model complexity and 
basic measurement model characteristics. The required minimum sample size can be easily 
achieved for a simple model with a small number of indicators. Nonetheless, a larger 
sample size is required for a complex model with a large number of indicators (Rocha & 
Chelladurai, 2012; Deng et al., 2018; Hair et al., 2015). To overcome this problem, some 
studies (Hall et al., 1999; Landis et al., 2000; Bandalos, 2002; Kim & Hagtvet, 2003; Nasser 
& Wisenbaker, 2006; Rocha & Chelladurai, 2012) used item parceling when the model 
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consisted of a large number of indicators. The purpose of item parceling is to reduce the 
model complexity by summing or averaging together two or more indicators as a parcel 
rather than using individual items as indicators. A new model created by the item parceling 
technique reduces the nuisance parameters and sampling variability and increases reliability 
(Little et al., 2013), and improves model fit (Hall et al., 1999; Landis et al., 2000; Sterba 
& MacCallum, 2010).

Although the application of item parceling has received attention among researchers 
in SEM, the debates on the use of item parceling have continued and it remains a 
controversial issue. Bandalos (2002) pointed out the disadvantages of using the parceling 
technique such as the dimensionality of original measures being doubtful, resulted in 
biased parameter estimates and improvement in model fit without taking into account 
the model misspecification issue. The item parceling technique may also make the 
multidimensional constructs reflect as unidimensional when the indicators are not well 
defined in the constructs (Bandalos, 2002). Therefore, Little et al. (2002) emphasized 
the need to understand the original structure and dimension before assigning items to 
parcels. Little et al. (2013) suggested that a simulation study should be carried out to 
investigate whether the item parcel (IP) model was affected by the parameter estimates 
in SEM by comparing the results of the item-level (IL) model. Thus, this study aims to 
examine whether the parameter estimates and model fit are affected by item parceling in 
a structural equation model and compare these results with the IL model. The statistical 
analyses of this simulation study were performed using IBM SPSS Statistic 20, AMOS 
and R programming language software. 

MATERIALS AND METHODS

Review of Theoretical Framework 

Sterba and MacCallum (2010) presented the theoretical developments by MacCallum 
and Tucker (1991) on population data. Let an i subscript denotes item-level, ix  the vector 
deviation score on items in the population, and E denotes expectation operator. The 
population covariance structure of the items is given by Equation 1

2, iiiiiii xxE ΨΦΛΣ +Λ′==




 ′ 				    [1]

where iΛ  is the common factor loading, iΦ  is the covariance of common factor 
loading and iΨ  is the diagonal of unique variances. The unique factors are assumed to be 
independent from each other and from common factors in the population. 

To illustrate, suppose we want to construct n parcels from a set of m items representing 
q factors (n = 4, m = 12 and q = 2). Let a p subscript denotes parcel-level and A  
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be an m × n selection matrix that allocates items to parcels. Given the vector of parcels, 
ip xx A= can be presented in the matrix form as
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where, 1px and 2px belong to the first factor and 3px  and 4px belong to the second 
factor. The population covariance structure of the parcels can be derived as Equation 2

( )ppp xxE ′= ,Σ 						      [2]

and can be rewritten as Equation 3

( ) ΑΑAΑΣ ′Σ=′′= iiip xxE 				    [3]

which implies Equation 4
ΑΑΨΑΛΦΑΛΣ ′+′′= 2

iiiiip 				    [4]
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Let ip ΑΛΛ =
 and ΑΑΨΨ ′= 2

ip
2 , then (Equation 5)

2
ppipp ΨΛΦΛΣ +′= 					     [5]

The factor loading for a parcel will equal the average of factor loading at the item-level 
when parcels are formed by averaging items. However, these conditions will hold in the 
population when the factor model fits perfectly at the item-level.

Sterba and MacCallum (2010) considered the structure of item-level sample covariance 
matrix developed by MacCallum and Tucker (1991). The assumptions that the unique 
factors are independent from each other and also with common factors cannot hold due 
to sampling variability. Thus, the item-level sample covariance structure is denoted by 
Equation 6

iuuiiuciicuiiccii iiii
ΨCΨΛCΨΨCΛΛCΛC ′+′+′+′= 	 [6]

Where 
iccC
 is the sample covariance matrix of common factors, 

icuC  is the sample 
covariance matrix of common and unique factors, 

iucC
 is the sample covariance matrix of 

unique and common factors and 
iuuC  is the sample covariance matrix of unique factors. 

Let ip ΑΛΛ =
 and iip ΑΨΑΨΨ =′′= , then (Equation 7)

puuppucppcuppccpp iiii
ΨCΨΛCΨΨCΛΛCΛC +′++′= 	 [7]

The item-level sample covariance structure that represents lack of fit due to the 
sampling error, 

iSEΔ  can be simplified as in Equation 8

ii SEiiccii ΔΨΛCΛC ++′= 2

					    [8]

Hence, the parcel-level sample covariance structure can be derived as Equation 9

ΑΑΔΑΑΨΑΛCΑΛC ′+′+′′=
ii SEiiccip

2

			   [9]

Let ip ΑΛΛ = , ΑΑΨΨ ′= 22
ip  and ΑΑΔΔ ′=

ip SESE , then (Equation 10)

pi SEppccpp ΔΨΛCΛC ++′= 2

				  
[10]

The effect of sampling error can be reduced when the sample size is large, item 
communalities are high (where the unique loadings iΨ  are low, hence uuiC , cuiC  and uciC
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matrices have little weight), and with smaller dimensions of uuiC , cuiC and uciC matrices 
(since more items are located in each parcel) (Bandalos, 2002; Sterba & MacCallum, 2010).

METHODS

Study 1: Simulation

To provide empirical evidence on the usefulness of item parceling, a simulation study was 
used to identify the effects of item parceling on parameter estimates and model fit based on 
different sample sizes and distribution of data by comparing the IL model and IP model. 
The simulations were carried out using the function of cfa from the lavaan package built 
in the R programming software. This study generated data for a structural equation model 
for the IL model and IP model. Sample sizes of 100, 150, 200, 250, 300, 500, 1000, 1500 
and 2000 were considered with different distribution of data which are normal (skewness 
= 0, kurtosis = 3), non-normal (skewness = 1, kurtosis = 1.5) and non-normal (skewness 
= 1.75, kurtosis = 3.75). 

The structural model was adapted from a study by Goodhue et al. (2012) which had 
twelve items for exogenous variable and three items for endogenous variable. However, 
this study only focused on the single path coefficient between exogenous and endogenous 
variables. The smallest sample size (n = 100) was considered as recommended by Hair et 
al. (2015). The method for generating non-normal data followed the work of Goodhue et al. 
(2012) by using the Fleishman method (Fleishman, 1978) which is commonly used in the 
generation of non-normal data (Orcan, 2013; Goodhue et al., 2012; Morgan et al., 2016). 
Two non-normal distributions were considered based on Orcan (2013) study to represent 
moderate skewness with low kurtosis (skewness = 1, kurtosis = 1.5) and high skewness 
with high kurtosis (skewness = 1.75, kurtosis = 3.75). 

For the IL model, twelve items for exogenous variable and three items for endogenous 
variable were generated with standardized loadings repeatedly fixed to 0.70, 0.80 and 
0.90. The higher loadings (≥0.7) were selected to reach convergence and model stability 
as suggested by Hair et al. (2015). For the IP model, the twelve items for exogenous 
variable generated in the IL model were assigned randomly to four parcels. The parcel 
scores were computed by averaging three items for each parcel. Due to identification 
reasons, one factor loading for each factor was fixed to 1 (Lyhagen & Kraus, 2013). The 
simulation process was repeated for 5000 replications for each combination (9 sample 
sizes x 3 distributions x 2 models). The mean of parameter estimates and model fit were 
calculated for each combination.

Study 2: Empirical Example
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In Study 2, we used an empirical example to observe the effect of item parceling on 
parameter estimation and model fit for a real dataset. This empirical dataset was from a 
study on self-efficacy and quality of life (QoL) of mothers with autistic children conducted 
by Nasir (2015). This study involved 181 respondents. The original (IL) model consisted 
of three latent variables with two endogenous variables: health related quality of life 
(HRQOL) and parenting sense of competence scale (PSOC) and one exogenous variable: 
parenting stress index (PSI). The HRQOL was a second-order construct measured by two 
factors (physical and mental) with five and four items, respectively. The PSOC was a 
second-order construct measured by two factors (value comforting and skill knowledge) 
with four items for each factor. Finally, the PSI was a second-order construct measured 
by three factors (parental distress, parent child and difficult child) with ten, eight and six 
items, respectively. Figure 1 shows the path diagram of the empirical example.

As mentioned before, to study the effectiveness of item parceling on parameter 
estimation and model fit, three different models of item parceling were tested. For Model 
1, the items for parental distress, parent child and difficult child were parceled into five, 
four and three parcels of two items each (Figure 2). The items for value comforting, skill 
knowledge, physical and mental remained unchanged. Model 2 was similar to Model 1 
except that the items for value comforting, skill knowledge and mental were parceled to 
form two parcels of two items each (Figure 3). Meanwhile, the four items for physical 
were parceled to form two parcels of two items each and the remaining item remained 
as a single indicator. Model 3 represented the simplest model where all the items in each 
factor were parceled together. The structures of these models are summarized in Table 1. 
The data analysis was carried out using SPSS AMOS Version 22.

Figure 1. The path diagram of empirical example

Value 
Comforting

Skill 
Knowledge

PSOC

PSI QOL

Parental 
Distress

Parental 
Child

Difficult
Child

Physical

Mental
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Figure 2. Model 1: Item-level model

Figure 3. Model 2: Item-parcel model

Table 1
Summary of model structures 

IL
IP

Model 1 Model 2 Model 3
parenting 
stress index 
(PSI)

parental 
distress

B1, B3, B4, B5, B6, 
B7, B8, B9, B10, 
B12

B1B3, B4B5, 
B6B7, B8B9, 
B10B12

B1B3, B4B5, 
B6B7, B8B9, 
B10B12

Averaging 
all items

parent-
child

B14, B15, B16, B17, 
B18, B19, B20, B22

B14B15, B16B17, 
B18B19, B20B22

B14B15, B16B17, 
B18B19, B20B22

Averaging 
all items

difficult 
child

B25, B26, B27, B28, 
B29, B30

B25B26, B27B28, 
B29B30

B25B26, B27B28, 
B29B30

Averaging 
all items

arenting 
sense of 
competence 
(PSOC)

skill 
knowledge

C10, C11, C13, C15 C10, C11, C13, 
C15

C10C11, C13C15 Averaging 
all items

value 
comforting

CC9, CC12, CC16, 
C17

CC9, CC12, 
CC16, C17

CC9CC12, 
CC16C17

Averaging  
all items

health related 
quality of life 
(HRQoL)

physical D2, D3, D4, D5, 
DD8

D2, D3, D4, D5, 
DD8

D2D3, D4D5, DD8 Averaging  
all items

mental D6, D7, D11, D12 D6, D7, D11, D12 D6D7, D11D12 Averaging 
all items

Total items 41 29 21 7
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RESULTS AND DISCUSSION

Study 1: Results of Simulation Study

This section presents the results of parameter estimates, mean square error and model fit 
for the IL model and IP model for different distributions of data via a simulation in Study 
1. Table 2 displays the performance of parameter estimates for the IL model and IP model 
under different sample sizes and distributions of data. The results indicate that the parameter 

Table 2 
Parameter estimates, standard deviation and mean square error 

n
= 0.585

Model 1: IL Model 2: IP 
SD MSE SD MSE

a100 0.588 0.132 0.017 0.510 0.102 0.016
b100 0.583 0.152 0.023 0.501 0.115 0.020
c100 0.539 0.201 0.043 0.445 0.143 0.040
a150 0.592 0.109 0.012 0.514 0.085 0.012
b150 0.586 0.126 0.016 0.505 0.096 0.015
c150 0.540 0.164 0.029 0.449 0.118 0.032
a200 0.589 0.092 0.008 0.513 0.071 0.010
b200 0.582 0.105 0.011 0.504 0.080 0.013
c200 0.533 0.135 0.021 0.448 0.100 0.029
a250 0.585 0.080 0.006 0.511 0.063 0.010
b250 0.577 0.093 0.009 0.501 0.072 0.012
c250 0.529 0.120 0.018 0.445 0.090 0.028
a300 0.588 0.074 0.005 0.513 0.057 0.008
b300 0.580 0.086 0.007 0.503 0.066 0.011
c300 0.531 0.112 0.015 0.447 0.083 0.026
a500 0.585 0.056 0.003 0.512 0.045 0.007
b500 0.577 0.064 0.004 0.502 0.050 0.009
c500 0.526 0.082 0.010 0.445 0.062 0.024

a1000 0.585 0.040 0.002 0.512 0.032 0.006
b1000 0.577 0.046 0.002 0.502 0.036 0.008
c1000 0.526 0.059 0.007 0.445 0.045 0.022
a1500 0.585 0.033 0.001 0.512 0.026 0.006
b1500 0.576 0.038 0.001 0.502 0.030 0.008
c1500 0.525 0.048 0.006 0.445 0.037 0.021
a2000 0.586 0.028 0.001 0.512 0.022 0.006
b2000 0.577 0.032 0.001 0.502 0.025 0.007
c2000 0.525 0.041 0.005 0.445 0.031 0.020

Note. n is sample size. IL is item-level model. IP is item-parcel model. β̂  is the estimated parameter. SD is 
the standard deviation. MSE is the mean square error. aNormal distribution (skewness=0, kurtosis=3).bNon-
normal distribution (skewness=1, kurtosis=1.5).cNon-normal distribution (skewness=1.75, kurtosis=3.75).

β

β̂ β̂



Ainur Amira Kamaruddin, Bee Wah Yap and Sayang Mohd Deni

636 Pertanika J. Sci. & Technol. 28 (2): 627 - 647 (2020)

estimates approach  the true parameter value for the IL model under normal condition but 
biased when the data is highly skewed. The simulation results also show that the parameter 
estimates for the IP model are underestimated for both normal and non-normal data. The 
mean square error (MSE) measures the closeness of fitted β̂  to the true value β . The 
MSE for both the IL model and IP model decreases when sample size increases. The MSE 
is the lowest for IL model and IP model when data is normal. The MSE is higher for both 
models when data is non-normal.

The box-plots in Figure 4 show that the dispersion (standard deviation) of parameter 
estimates is large for a small sample size. As expected, the dispersion of the parameter 

Figure 4. Box-plots for parameter estimates, β̂  for item-level (IL) model and item-parcel (IP) model
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estimates decreases as the sample size increases. The box-plots also show that the median 
of the parameter estimates is lower for the IP model across all sample sizes and types of 
distribution.

Table 3 shows the value of GoF measures for the IL model and IP model for different 
distributions of data. The results indicate that the model fit for all GoF measures are likely 
to improve with a higher sample size. The IP model has higher GoF measures for both 
normal and non-normal data across all sample sizes. When the data is normal, the RMSEA 
is lower for the IL model. However, the RMSEA is slightly lower for the IP model when 
data is non-normal. Since the AGFI and NFI are formed in a similar pattern with GFI and 
due to space constraint, the box-plots for AGFI and NFI are not presented.

Table 3
GoF measure values

n Model Distribution Chi-sq GFI AGFI RMSEA NFI TLI CFI
100 IL a

b
c

96.303
114.962
141.432

0.892
0.874   
0.849

0.855
0.830   
0.797

0.026
0.050
0.075

0.924
0.908
0.869

0.993
0.974   
0.937

0.992
0.977
0.947

IP a
b
c

13.638
15.643
18.555

0.964
0.959
0.952

0.922
0.911
0.896

0.028
0.040
0.056

0.978
0.974
0.964

0.998
0.993
0.982

0.996
0.993
0.987

150 IL a
b
c

93.981
113.168
139.329

0.926
0.912
0.894

0.900
0.881
0.857

0.018
0.039
0.060

0.949
0.938
0.909

0.997
0.984   
0.959

0.995
0.986
0.965

IP a
b
c

13.510
15.534
18.401

0.976
0.972
0.967

0.947
0.940
0.929

0.022
0.031
0.045

0.985
0.983
0.975

0.999
0.995
0.988

0.997
0.996
0.992

200 IL a
b
c

92.526
112.095
138.322

0.944
0.932
0.918

0.924
0.909
0.889

0.014
0.033
0.051

0.962
0.953
0.931

0.998
0.988
0.969

0.997
0.990
0.974

IP a
b
c

13.204
15.341
18.363

0.982
0.979
0.975

0.961
0.955
0.946

0.018
0.027
0.038

0.989
0.987
0.981

0.999
0.997
0.991

0.998
0.997
0.994

250 IL a
b
c

91.776
111.263
137.066

0.954
0.945
0.933

0.939
0.926
0.910

0.012
0.029
0.045

0.970
0.962
0.944

0.999
0.991
0.976

0.998
0.992
0.980

IP a
b
c

13.357
15.548
18.385

0.985
0.983
0.980

0.968
0.963
0.956

0.016
0.024
0.035

0.991
0.989
0.985

0.999
0.997
0.993

0.999
0.997
0.995

300 IL a
b
c

91.500
111.178
137.070

0.962
0.954
0.944

0.948
0.938   
0.924

0.011
0.026
0.041

0.975
0.968
0.953

0.999
0.992   
0.980

0.998
0.993
0.983

IP a
b
c

13.097
15.338
18.317

0.988
0.986
0.980

0.974
0.969
0.964

0.014
0.022
0.031

0.993
0.991
0.988

0.999
0.998
0.994

0.999
0.998
0.997

500 IL a
b
c

90.113
110.218
136.344

0.977
0.972
0.965

0.969
0.962
0.953

0.008
0.020
0.032

0.985
0.981
0.972

0.999
0.996
0.988

0.999
0.996
0.990



Ainur Amira Kamaruddin, Bee Wah Yap and Sayang Mohd Deni

638 Pertanika J. Sci. & Technol. 28 (2): 627 - 647 (2020)

Table 3 (continue)

n Model Distribution Chi-sq GFI AGFI RMSEA NFI TLI CFI
500 IP a

b
c

13.101
15.338
18.350

0.993
0.991
0.990

0.984
0.981
0.978

0.011
0.017
0.024

0.996
0.995
0.992

0.999
0.999
0.996

0.999
0.999
0.997

1000 IL a
b
c

89.763
109.711
136.011

0.988
0.986   
0.982

0.984
0.981
0.976

0.005
0.014
0.022

0.992
0.990
0.985

0.999
0.998
0.994

0.999
0.998
0.995

IP a
b
c

13.045
15.290
18.347

0.996
0.996
0.995

0.992
0.991
0.989

0.008
0.012
0.017

0.998
0.997
0.996

0.999
0.999
0.998

0.999
0.999
0.999

1500 IL a
b
c

89.398
109.525
136.485

0.992
0.990
0.988

0.989
0.987
0.984

0.004
0.011
0.018

0.995
0.994
0.990

0.999
0.999
0.996

0.999
0.999
0.997

IP a
b
c

12.961
15.211
18.296

0.998
0.997
0.997

0.995
0.994
0.993

0.006
0.010
0.014

0.999
0.998
0.997

1.000
0.999
0.999

0.999
0.999
0.999

2000 IL a
b
c

89.347
109.559
136.773

0.994
0.993
0.991

0.992
0.990   
0.988

0.004
0.010
0.016

0.996
0.995   
0.993

0.999
0.999
0.997

0.999
0.999
0.997

IP a
b
c

13.006
15.269
18.391

0.998  
0.998
0.997

0.996
0.995
0.994

0.005
0.008
0.012

0.999
0.999
0.998

0.999
0.999
0.999

0.999
0.999
0.999

Note. n is sample size. IL is item-level model. IP is item-parcel model. aNormal (skewness=0, kurtosis=3). 
bNon-normal (skewness=1, kurtosis=1.5). cNon-normal (skewness=1.75, kurtosis=3.75). Chi-sq is the chi-
squared. GFI is the goodness-of-fit Index. AGFI is the Adjusted goodness-of-fit index. RMSEA is the root 
mean square error of approximation. NFI is the Normed Fit Index. TLI is the Tucker-Lewis index. CFI is the 
comparative fit index.

The box-plots for GFI in Figure 5 show that GFI is affected by sample size, model 
structure (IL model and IP model), and distribution of data. The GFI improves as the sample 
size increases for both models and GFI is lower when data is non-normal. This finding is 
consistent the studies of Fan et al. (1999) and DoĞan and Özdamar (2017) but contradicts 
with the studies of Jöreskog and Sörbom (1982) and Bagozzi and Yi (1988) who found 
that sample size does not affect the values of GFI and AGFI. The box-plots also show that 
the median of GFI is higher for the IP model and the medians of both models are close to 
each other when the sample size is large. The dispersion is large for small sample sizes 
(n<500) for both models under normal and non-normal conditions. 

The box-plots in Figure 6 show that RMSEA for the IL model and IP model are within 
the acceptable threshold level (RMSEA<0.06), indicating that both models fit the data 
well. RMSEA is affected by sample size, model structure (IL model and IP model) and 
distribution of data. The median of RMSEA is lowest for the IP model and it is close to 
the median of the IL model for a large sample size. The dispersion of RMSEA declines as 
the sample size increases under normal and non-normal conditions.
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Figure 5. Box-plots for GFI for item-level (IL) model and item-parcel (IP) model
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Figure 6. Box-plots for RMSEA for item-level (IL) model and item-parcel (IP) model
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The box-plots in Figure 7 show that TLI is not influenced much by sample size and this 
finding is in line with the study of Fan et al. (1999). TLI for the IL model is more affected 
when data is non-normal and sample size is small (n = 100). The TLI for both models 
exceed the acceptable threshold level (>0.95) indicating that both models fit the data well. 
The box-plots show that the median of TLI is higher for the IP model and the medians 
of both models are close to each other for a large sample size. The dispersion is large for 
small sample sizes (n<500) for both models under normal and non-normal conditions.

Figure 7. Box-plots for TLI for item-level (IL) model and item-parcel (IP) model 
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The box-plots in Figure 8 show that CFI is affected by model structure (IL model and 
IP model). The CFI also shows that the IL model and IP model have good model fit since 
the values exceed the acceptable threshold level (>0.95). The median of CFI is higher for 
the IP model compared to the IL model but for a large sample size, the medians for both 
models are close to each other. The dispersions are large for small sample sizes (n<500) 
for both models under normal and non-normal conditions.     

Figure 8. Box-plots for CFI for item-level (IL) model and item-parcel (IP) model
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The simulation results and box-plots demonstrate that GoF measures improve with an 
increase in sample size and GoF measures are affected by model structure. In summary, 
based on parameter estimates and MSE, the IL model produces less biased parameter 
estimates than the IP model. However, the parameter estimates of the IL model are affected 
when data is severely non-normal. The summary of GoF measures presented in Table 4 
shows that model fit for the IP model is better than the ILvel model under normal and 
non-normal conditions except for RMSEA under normal condition.

Table 4 
Summary of GoF measures 

GFI AGFI NFI TLI CFI RMSEA
N NN N NN N NN N NN N NN N NN

Model 1: IL /
Model 2:

IP / / / / / / / / / / /

Note. N is normal. NN is non-normal. IL is item-level model. IP is item-parcel model. [ / ] represent the best 
model fit. GFI is the goodness-of-fit index. AGFI is the Adjusted goodness-of-fit index. RMSEA is the root 
mean square error of approximation. NFI is the Normed Fit Index. TLI is the Tucker-Lewis index. CFI is the 
comparative fit index.

Study 2: Results of Empirical Example

This section presents the results of parameter estimates and model fit for the IL model 
and IP model for the empirical example in Study 2. The results for parameter estimates, 
p-value and standard error for the original (IL) model and IP (Model 1, Model 2, Model 
3) models are presented in Table 5. The parameter estimates for Model 1 are closer to the 
original model followed by Model 2 and Model 3. Based on p-values, the main paths are 
significant for all models. Among the three IP models,  Model 1 has the lowest standard 
error while Model 3 has the highest standard errors for all paths.

Table 5 
Parameter estimates, p-value and standard error of empirical example

IL
IP

Model 1 Model 2 Model 3
PSOC <- PSI -0.489***

(0.101)
-0.505***

(0.090)
-0.538***

(0.095)
-0.551***

(0.106)
QoL<- PSOC 0.357**

(4.015)
0.347**
(4.049)

0.370**
(5.264)

0.286**
(6.009)

QoL<- PSI -0.390***
(2.292)

-0.393***
(2.059)

-0.412***
(2.619)

-0.491***
(3.962)

Note. ***p-value < 0.01.**p-value < 0.05. *p-value < 0.10. PSOC is parenting sense of competence. IL is 
item-level model. IP is item-parcel model. PSI is parenting stress index. HRQoL is health related quality of 
life. The value in ( ) represent standard error. 
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Table 6 shows the GoF measures of the empirical example. The results indicate that all 
the GoF measures are higher for the IP model. However, the value of RMSEA for Model 
1 is closer to the original (IL) model.

The empirical findings support the simulation results in that item parceling can improve 
model fit but it can also produce biased parameter estimates. Based on this empirical 
example, it is not advisable to average all items in a construct to form an observed 
variable (Model 3).  We recommend forming parcels for a model which consists of many 
indicators in a construct (six and above). Researchers should also consider to use at least 
three indicators per construct as suggested by Ding et al. (1995), Hair et al. (2015) and 
Iacobucci (2010).

Table 6 
GoF measures of empirical examples

Model Chi-sq(df) GFI AGFI RMSEA NFI TLI CFI
IL 1331.512 (767) 0.740 0.708 0.064 0.711 0.841 0.851
IP :
Model 1 645.831 (366) 0.808 0.771 0.065 0.804 0.892 0.903
Model 2 368.245 (180) 0.848 0.804 0.076 0.815 0.877 0.076
Model 3 48.607 (11) 0.934 0.833 0.138 0.894 0.836 0.914

Note. GFI is the goodness-of-fit index. AGFI is the Adjusted goodness-of-fit index. RMSEA is the root mean 
square error of approximation. NFI is the Normed Fit Index. TLI is the Tucker-Lewis index. CFI is the 
comparative fit index. IL is item-level model. IP is item-parcel model.

CONCLUSION

This simulation study investigated the performance of parameter estimates and model fit 
based on different sample sizes, model structures and distributions of data in SEM. The 
simulation results indicate that the IL model produced biased parameter estimates under 
non-normal distribution of data. The IP model also produced biased parameter estimates 
for both normal and non-normal data regardless of sample size. In terms of model fit, the 
IP model is better than the IL model under normal and non-normal conditions except for 
RMSEA under normal condition. The empirical example provided evidence that the IP 
model estimates were close to the ILevel model but the minimum number of indicators per 
construct must be at least three to reduce the biasness of parameter estimates. Averaging 
all items of a construct is not recommended as it will produce highly biased estimates.

Several limitations should be noted in this study because it only used a random item 
parceling technique and only a simple structural model in the simulation design. In future 
work, the simulation study could be extended to investigate how different parceling 
techniques can reduce the biasness of the parameter estimates of a structural equation 
model for a more complex model.
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